Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo.
El ejemplo clásico es el de un queso que partimos en porciones. En el dibujo, hemos hecho 8 porciones, 3 rosas y 5 verdes.
Si tomamos las 3 rosas, representan 3 porciones de las ocho en las que hemos dividido el queso, es decir 3 / 8 del queso, y si tomamos las 5 verdes, representan 5 porciones de las ocho en las que hemos dividido el queso, es decir 5 / 8 del queso. |
Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.
Para leer una fracción, el numerador se lee normalmente pero, como veremos a continuación, el denominador tiene una forma especial de leerse.
Denominador | Lectura | Ejemplos |
2 | medios | 5 / 2 = cinco medios |
3 | tercios | 2 / 3 = dos tercios |
4 | cuartos | 3 / 4 = tres cuartos |
5 | quintos | 4 / 5 = cuatro quintos |
6 | sextos | 5 / 6 = cinco sextos |
7 | séptimos | 6 / 7 = seis séptimos |
8 | octavos | 7 / 8 = siete octavos |
9 | novenos | 8 / 9 = ocho novenos |
10 | décimos | 9 / 10 = nueve décimos |
mayor de 10 | Se agrega al número la terminación avos | 10 / 11 = diez onceavos |
Clasificación De Las Fracciones
Las fracciones se pueden clasificar de distintas formas; en la siguiente tabla se muestran las características de las más importantes.
Tipo | Características | Ejemplos |
Propia | El numerador es menor que el denominador | 1 / 2, 7 / 9 |
Impropia | El numerador es mayor que el denominador | 4 / 3, 5 / 2 |
Homogéneas | Tienen el mismo denominador | 2 / 5, 4 / 5 |
Heterogéneas | Tienen distinto denominador | 3 / 7, 2 / 8 |
Entera | El numerador es igual al denominador; representan un entero | 6 / 6 = 1 |
Equivalentes | Cuando tienen el mismo valor. Dos fracciones son equivalentes si son iguales sus productos cruzados | 2 / 3 y 4 / 6 2 x 6 = 3 x 4 |
Si en una fracción multiplicamos o dividimos el numerador y el denominador por un mismo numero, obtenemos una fracción equivalente a la primera, pues ambas tienen el mismo valor. Por ejemplo:
1 | (1 x 4) | 4 | 3 | (3 : 3) | 1 | |||||||||
— | = | ——— | = | — | = | 0,5 ; | — | = | ——— | = | — | = | 0,2 | |
2 | (2 x 4) | 8 | 15 | (15 : 3) | 5 |
Simplificar o Reducir una fracción consiste en hallar la fracción equivalente más pequeña posible; para ello, lo primero que hacemos es buscar el mayor número que divide exactamente (resto = 0) al numerador y al denominador (mayor divisor común) y después dividimos el numerador y el denominador por este mayor divisor común, ya que como hemos visto antes, dividiendo el numerador y el denominador de una fracción por un mismo número obtenemos una fracción equivalente (de igual valor).
Por ejemplo: Simplificar 30/42
Los números que dividen exactamente a 30 (divisores) son: 2, 3, 5, 6, 10 y 15.
Los números que dividen exactamente a 42 (divisores) son: 2, 3, 6, 7, 14 y 21.
Los divisores comunes a ambos son 2, 3 y 6. El mayor divisor común es 6, por tanto, dividimos numerador y denominador por 6.
30 | 30/6 | 5 | ||
—— | = | ——— | = | — |
42 | 42/6 | 7 |
Cuando en una fracción, el numerador y el denominador no tienen ningún divisor común, se dice que es una fracción irreducible.
Suma Y Resta De Fracciones
Si las fracciones tienen el mismo denominador (homogéneas), se suman o restan los numeradores y se pone el mismo denominador.
Ejemplo:
3 | 2 | (3 + 2) | 5 | 5 | 2 | (5 – 2) | 3 | |||||||
— | + | — | = | ——— | = | — | ; | — | – | — | = | ——— | = | — |
6 | 6 | 6 | 6 | 7 | 7 | 7 | 7 |
Si las fracciones tienen distinto denominador (heterogéneas), lo primero que tenemos que hacer es igualar los denominadores. Para conseguirlo, buscamos dos fracciones equivalentes a las dadas, multiplicando el numerador y el denominador de cada una de ellas por el denominador de la otra. Una vez obtenido el mismo denominador, procedemos como en el caso anterior, sumamos los numeradores y ponemos el denominador común.
Ejemplo:
2 | 3 | (2 x 7) | (3 x 5) | 14 | 15 | 29 | ||||||
— | + | — | = | ——— | + | ——— | = | —— | + | —— | = | —— |
5 | 7 | (5 x 7) | (7 x 5) | 35 | 35 | 35 |
Multiplicación De Fracciones
El producto de varias fracciones es igual a otra fracción que tiene por numerador el producto de los numeradores y por denominador el producto de los denominadores.
Ejemplo:
3 | 4 | 2 | (3 x 4 x 2) | 24 | 2 | ||||||
— | x | — | x | — | = | ———— | = | —— | simplificando | = | — |
4 | 5 | 3 | (4 x 5 x 3) | 60 | 5 |
Fracción De Un Número
Calcular la fracción de un número es lo mismo que multiplicar la fracción por ese número.
Ejemplo: Calcular los 2 / 3 de 60:
2 | 2 | (2 x 60) | 120 | |||||||||
— | de | 60 | = | — | x | 60 | = | ——— | = | —— | = | 40 |
3 | 3 | 3 | 3 |
División De Fracciones
El cociente de dos fracciones es otra fracción que tiene por numerador el producto del numerador de la primera por el denominador de la segunda, y por denominador el producto del denominador de la primera por el numerador de la segunda.
Ejemplo:
4 | 3 | (4 x 5) | 20 | |||
— | : | — | = | ——— | = | —— |
9 | 5 | (9 x 3) | 27 |
pagina de consulta.
http://www.aplicaciones.info/decimales/fraccion.htm
para practicar has click aqui
q buena pagina para aprender
ResponderEliminar